#import bevy_pbr::{ pbr_fragment::pbr_input_from_standard_material, pbr_functions::alpha_discard, } #ifdef PREPASS_PIPELINE #import bevy_pbr::{ prepass_io::{VertexOutput, FragmentOutput}, pbr_deferred_functions::deferred_output, } #else #import bevy_pbr::{ forward_io::{VertexOutput, FragmentOutput}, pbr_functions::{apply_pbr_lighting, main_pass_post_lighting_processing}, } #endif struct ChunkMaterial { array_texture: texture_2d_array, array_texture_sampler: sampler, } @group(2) @binding(100) var chunk_material: ChunkMaterial; @fragment fn fragment( in: VertexOutput, @builtin(front_facing) is_front: bool, ) -> FragmentOutput { // generate a PbrInput struct from the StandardMaterial bindings var pbr_input = pbr_input_from_standard_material(in, is_front); // alpha discard pbr_input.material.base_color = alpha_discard(pbr_input.material, pbr_input.material.base_color); #ifdef PREPASS_PIPELINE // in deferred mode we can't modify anything after that, as lighting is run in a separate fullscreen shader. let out = deferred_output(in, pbr_input); #else var out: FragmentOutput; // apply lighting out.color = apply_pbr_lighting(pbr_input); let layer = i32(in.world_position.x) & 0x7; out.color = textureSample(chunk_material.array_texture, chunk_material.array_texture_sampler, in.uv, layer); // apply in-shader post processing (fog, alpha-premultiply, and also tonemapping, debanding if the camera is non-hdr) // note this does not include fullscreen postprocessing effects like bloom. out.color = main_pass_post_lighting_processing(pbr_input, out.color); // we can optionally modify the final result here out.color = out.color * 2.0; #endif return out; }