91 lines
2.9 KiB
WebGPU Shading Language
91 lines
2.9 KiB
WebGPU Shading Language
#import bevy_pbr::{
|
|
pbr_fragment::pbr_input_from_standard_material,
|
|
pbr_functions::alpha_discard,
|
|
}
|
|
#import bevy_pbr::mesh_functions::{mesh_position_local_to_world,get_model_matrix,mesh_normal_local_to_world}
|
|
#import bevy_pbr::view_transformations::position_world_to_clip;
|
|
|
|
#ifdef PREPASS_PIPELINE
|
|
#import bevy_pbr::{
|
|
prepass_io::{VertexOutput, FragmentOutput},
|
|
pbr_deferred_functions::deferred_output,
|
|
}
|
|
#else
|
|
#import bevy_pbr::{
|
|
forward_io::{VertexOutput, FragmentOutput},
|
|
pbr_functions::{apply_pbr_lighting, main_pass_post_lighting_processing},
|
|
}
|
|
#endif
|
|
|
|
|
|
@group(2) @binding(100) var array_texture: texture_2d_array<f32>;
|
|
@group(2) @binding(101) var array_texture_sampler: sampler;
|
|
@fragment
|
|
fn fragment(
|
|
in: VertexOutput,
|
|
@builtin(front_facing) is_front: bool,
|
|
) -> FragmentOutput {
|
|
// var vin : VertexOutput;
|
|
// vin.position = in.position;
|
|
// vin.world_position = in.world_position;
|
|
// vin.world_normal = in.world_normal;
|
|
// vin.uv = in.uv;
|
|
// generate a PbrInput struct from the StandardMaterial bindings
|
|
var pbr_input = pbr_input_from_standard_material(in, is_front);
|
|
|
|
|
|
// alpha discard
|
|
pbr_input.material.base_color = alpha_discard(pbr_input.material, pbr_input.material.base_color);
|
|
|
|
#ifdef PREPASS_PIPELINE
|
|
// in deferred mode we can't modify anything after that, as lighting is run in a separate fullscreen shader.
|
|
let out = deferred_output(in, pbr_input);
|
|
#else
|
|
var out: FragmentOutput;
|
|
// apply lighting
|
|
|
|
let layer = u32(in.uv_b.x);
|
|
out.color = textureSample(array_texture, array_texture_sampler, in.uv, layer);
|
|
|
|
out.color *= apply_pbr_lighting(pbr_input);
|
|
|
|
|
|
|
|
// apply in-shader post processing (fog, alpha-premultiply, and also tonemapping, debanding if the camera is non-hdr)
|
|
// note this does not include fullscreen postprocessing effects like bloom.
|
|
out.color = main_pass_post_lighting_processing(pbr_input, out.color);
|
|
|
|
// we can optionally modify the final result here
|
|
out.color = out.color * 2.0;
|
|
#endif
|
|
|
|
return out;
|
|
}
|
|
|
|
//struct Vertex {
|
|
// @builtin(instance_index) instance_index: u32,
|
|
// @location(0) position: vec3<f32>,
|
|
// @location(1) uv: vec2<f32>,
|
|
// @location(2) normal: vec3<f32>,
|
|
// @location(3) texture_index: u32,
|
|
//};
|
|
//
|
|
//struct VOut {
|
|
// @builtin(position) position: vec4<f32>,
|
|
// @location(0) world_position: vec4<f32>,
|
|
// @location(1) world_normal: vec3<f32>,
|
|
// @location(2) uv: vec2<f32>,
|
|
//// @location(7) @interpolate(flat) texture_index: u32,
|
|
//};
|
|
//
|
|
//@vertex
|
|
//fn vertex(vertex: Vertex) -> VOut {
|
|
// var out: VOut;
|
|
// out.world_position = mesh_position_local_to_world(get_model_matrix(vertex.instance_index), vec4<f32>(vertex.position, 1.0));
|
|
// out.position = position_world_to_clip(out.world_position.xyz);
|
|
//// out.texture_index = vertex.texture_index;
|
|
// out.uv = vertex.uv;
|
|
// out.world_normal = mesh_normal_local_to_world(vertex.normal, vertex.instance_index);
|
|
// return out;
|
|
//}
|